計量経済学入門1(木曜1限) について  5月10日(日)16:45 最終更新


   今期は全ての回がオンライン講義となり、評価は平常点のみで行います。

   4月30日課題の正答と解説こちらにUPしました。
 5月7日課題の正答と解説こちら(PDFファイル)。

 5月14日講義資料こちら。    補足資料こちら


講義の進め方 今後も変更が生じる可能性があります。

 講義資料(音声なし)は、月曜の9時までに関大LMSに起きます。(全てPDF資料)
   こちらにも、同一のファイルを置きます(PPT、Word、PDF)

 講義資料の解説を、木曜日9時から10時前まで、Zoomで行います。
   参加は必須ではありません(出席は取りません)。
   ZoomミーティングのID等は、LMSのメッセージで、火曜中にお知らせします。

 評価は、毎回の確認課題で行います。関大LMSで出題します。
   解答期間は、原則、木曜日の10時から土曜日の23:59までです。


講義で学んだ事・これから学ぶこと

  1. 4/9 [休講] 「講義連絡」から、受講の理由、どんな知識を身につけたいかなど
        アンケート(出席点扱い)を行いました。

  2. 4/16 [休講] 「個人伝言」によりネット環境等の報告(出席点扱い)をお願い
        しました。

  3. 4/23 下記について学びました。
     1.計量経済学とは何か  計量経済学とはどのようなことか、なぜ必要か。
     2.モデルとは何か
     3.経済データを扱う場合の注意(冒頭部分)

       4/16 配付資料「計量経済学をはじめよう」
       4/23 講義資料「回帰分析とは.ppt」
       4/23 補足資料「問題解決とデータ分析.pdf」

  4. 4/30 記述統計について、分布の重要性を学びました。

       講義資料「データを見る際のポイント.ppt」
       補足資料「統計でダマされないために.ppt」

  5. 5/7 代表値(中心、ばらつきの大きさを示す指標)を学びました。

       講義資料「データの特徴をとらえる.pptx」

  6. 5/14 確率の考え方とデータとの関連を学びます。

 今後の予定
  5/21日以降、推測統計について、学ぶ予定です。


小テストの解答・解説

  • 4月23日の課題 満点は5点。
    問題:適切に採取されたデータを、適切に扱えば、客観的な証拠(エビデンス)として用いることができます。 しかし、誤った理解からか悪意からか、データ自身が正しく採取されていなかったり、不適切な分析が行われたりしたため、データが間違った結論を導くために用いられていることも少なくありません。
     あなたがこれまでに見聞きした「データを用いた誤った(ウソっぽい)記述やグラフ等」を説明し、どこにどのような問題があるか指摘してください。

  • 4月30日の課題  各問1点、満点は5点。
     箱番号1,2、4は統計検定4級の、箱番号5は統計検定3級の問題
     箱番号3は今年のセンター入試、数Iの問題

    箱番号1の正答:5  数量で表せない質的データはCのみ
     ほぼ正答でした(正答率:93.3%)。
    箱番号2の正答:1  数量データ(量的データ)はAのみ。正答率:75%
     2(Cも量的データ)の誤答が多かった。
     BとCといったYes/No回答は、量的データではありません。      
    箱番号3の正答:3
      考え方:図3には5本の斜線が引かれている。
      一番右下にある斜線Aは、男性と女性の平均寿命が5.5歳異なることを
      右下から2番目にある斜線Bは、平均寿命が6歳異なることを示している。
      ということは、この2本の線に挟まれている領域に9つの点があるので
      ヒストグラムの5.5から6.0にある度数は合計9あるはず =>3番が正解
      (なお、AとBの間にある点は、9つともかなりB寄り。なので、ヒスト
       グラムでは5.5から5.75の度数0、5.75から6.0の度数9となっている)
      以下、同じ発想で残りの3本の斜線やその領域になる点の数を確認し、
      3番が正しいことを確認してください。■
     グラフの読み方に気づくと簡単な問題ですが、少しコツがいりました。
     正答率:68.3%
     0と1の誤答が多かった(?なんとなく、右に山の中心があるグラフを予想?)
    箱番号4の正答:3  花子さんが正しいのはグラフから明か。
     太郎さんの意見は「率」でなく「数」に関連しているが、老齢者の率は単調
     増加、また、グラフ左側より総人口も単調増加しているので、正しいとわかる。

     意外なことに、この正答率が最低でした(58.3%)。
     ニュースでもありそうなグラフ、説明なのでしっかり理解してください。
     1(花子さんが正しくない)と誤答した人(28.3%!)はなぜそう思ったか、
     思い出してみましょう。
     2(太郎さんは正しくない)と解答した人(11.7%)は、左側の総人口の
     情報を見落としたと思います。グラフは隅々まで見ましょう。
    箱番号5の正答:5(正答率:75% )
     Dの相関係数は−1に近くなるので、5は誤り
      これも意外に誤答が多かったです。散布図は、回帰分析のスタート地点でです。
     しっかり理解してください。
      2は、5つのグラフのなかで一番右上がりや右下がりの傾向が見えませんので、
     正しい。(誤答率:15%)
      3は、BもCも右上がりの傾向があり、Cの方がより直線上にまとまっている
     ので、正しい。(誤答率:6.7%)
      4は、プロット(打点)が右下がりになっていますので、正しい。
     (誤答率:5%)
へ戻る